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Expectation Value of the Bijvoet Ratio* 
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The theoretical expressions for the expectation values of the Bijvoet difference and the Bijvoet ratio 
have been derived for a non-centrosymmetric crystal in which the anomalous scatterers are all of the 
same type. The dependence of the expectation value of the Bijvoet ratio on the number and the strength 
of the anomalous scatterers in the unit cell is discussed and this is used to obtain the best conditions 
for accurate measurement of the Bijvoet differences of a fairly large percentage of reflexions. 

1. Introduction 

The increasing importance of the anomalous disper- 
sion method in crystal structure analysis necessitates a 
theoretical study of the measurability of Bijvoet differ- 
ences. One approach to this would be a study of the 
statistical distribution of Bijvoet differences, AL The 
distribution of Bijvoet differences in a normalized 
form, viz. x=lAII/4[(Io.)(I~,)] ~ (where P and Q refer 
to the anomalous and normal scatterers respectively) 
has already been worked out (Parthasarathy & Srini- 
vasan, 1964). However, the distribution of A I normal- 
ized by the local mean intensity, (IN) (where N = P + Q) 
rather than by the factor 4[(IQ)(lj ;)]  ~ is probably 
more useful. The distribution of this quantity A 

* Contribution no. 195 from the Centre of Advanced Study 
in Physics, University of Madras, Madras 25, India. 

( =  IAIII(IN)) can easily be obtained from the known 
distribution of x, since we have in the usual notation 

IAII IAII 
A _ _  _ _  - -  _ _  

(IN) 4[(Io>(l'e')l ~ 

× 4[(IQ)(1";)]* =4kalthx (1) 
(IN) 

where k =f~/f;,, the ratio of the imaginary to the total 
real part of the atomic scattering factor of the anom- 
alous scatterer and a~ and a 2 are the fractional con- 
tribution to the mean intensity by the P- and the 
Q-atoms respectively. 

A better normalization factor would be the mean 
intensity I of the Bijvoet pair of reflexions, i.e. 1= 
½[I(H)+I(fi)].  The normalized Bijvoet difference 
IAII/I (denoted by 6) is called the Bijvoet ratio in this 
paper. The distribution function of 6 is difficult to cal- 
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culate, since AI and I are dependent variables. The 
expectation value (6) of fi can however be worked out 
and it can provide a useful criterion for the measura- 
bility of Bijvoet differences. We shall presently obtain 
the expressions for (x),  (A) and (6), restricting our- 
selves to the commonly occurring case of a crystal 
containing only one type of anomalous scatterer in the 
unit cell. 

2. Derivation of the expectation values of x, A and 6 

To obtain the expressions for (x),  (A) and (~), we 
use a simple theorem in probability theory: If 
f (x ,  y, z) is a simple function of the random variables 
x, y and z and if P(x, y; z) is the conditional joint 
density function of x and y for a given z and if P(z) 
is the density function of z, then 

( f (x ,  y, z); z)=f~. -,ff(x' y, z) P(x, y; z)dxdy (2) 

and 

( f (x ,  y, z))=ISf(x,y,z);,) z) P(z)dz. (3) 

2.1 Expectation values of x and A 
The magnitude of the Bijvoet difference is given by 

(see Ramachandran & Raman, 1956): 

IAII =41F~'I lEVI Isin Ol=4klFNI IF;I Isin 01 (4) 
where F e is the contribution to the structure factor of 
a reflexion H (=  hkl) from the real parts of the atomic 
scattering factors of the anomalous scatterers in the 
unit cell and F~r is that from the real parts of the 
atomic scattering factors of all the atoms in the unit 
cell. In (4), 0 represents the phase angle between F )  
and F;.  Making use of (2) in (4), we obtain. 

(IAII;IF;I)=4klF;I<IFfvl Isin 01; IF;I) • (5) 

It is clear from the right hand side of (5) that the re- 
quired mean value, ([AII; IF;I), can be obtained if we 
know the joint density function of [F~] and 0 for a 
given [F;[, namely the function P(IF~I, 0; IF;I). The 
required expression is already available from another 
very similar problem considered earlier (Parthasarathy, 
1965). The distribution that has been obtained earlier, 
namely P([FM, 0; ]Fp[) corresponds to the problem 
when all the atoms in the P- and Q-groups are normal 
scatterers. In the present problem however, we con- 
sider the total real part which when added to FQ leads 
to F~¢. A reference to the derivation given earlier (Par- 
thasarathy, 1965) shows immediately that, since there 
is no change in the vector FQ, the earlier expression 
can be completely taken over to the present case. Thus 
we can write, using equation (5) of Parthasarathy 
(1965), 

• • • 2 • P(IF~I, 0; IFi, l)=(lf~l/rcao) exp [-([f~lZ 
+ IF;I z -  2lF~rl IF;I cos 0)/a~]. (6) 

From (5) and (6), we obtain 

4klGI coo 
(,A/,; IF;I)-  na~ _10 _.~-n ]FNI2 Isin 0l 

xexp [-([Ffv[Z+[F;[2-2[Ffv[ [F;[ 
x cos O)/a2o]dlFfvldO. (7) 

On integration (see (A-4) of Appendix A) (7) simpli- 
fies to 

(IAII; Ig;I)=4n-~-kao, lg;I . (8) 

From (3) and (8) we have 

( Id l I )=4n-~kao( lF; l )=4n-~kapao(yp)  , (9) 

where y p =  [F;[/ap. From (9), we obtain 

IAll \ -n-~(yv> (10) (x) = 
4ka paq / 

and 

/IAII \ =4n_&ko.ffrz(yp)=4kala2(x) (11) <z>= \ - ~ - /  

From (10) and (11), it is clear that (x)  and (A) depend 
on the number of P-atoms and we shall consider four 
important cases, viz., 1, 2, M.C. (i.e. P=many ,  P-group 
centric) and M.A. (i.e. P=many ,  P-group acentric). 
Since (yp> takes values 1, 21/2/n, I/(2/n) and l/n/2 for 
P= 1, 2, M.C. and M.A. respectively [these values can 
easily be obtained from the density function P(yp) of 
yp given in 19(a) to (d)], the respective values of (x)  
are l/l/n, (2/~) 3/2, l/2/~ and ½. In a similar way, we 
have from (11) that 

[ 4n-*kala2=2"2568kalo'2 for P = I  
8 l/2z~-3/Zkcrxo'2 = 2-0318kala2 for P = 2 

<A)= 41/2n-lkolo2 = 1.8008ko1o2 for P=M.C.  
2kala2 for P =  M.A. (12) 

2.2 Expectation value of fi 
The mean intensity of the Bijvoet pair of reflex- 

ions is known to be (see Ramachandran & Raman, 

1956) I=½[I(H)+I(~)]=IF~vI2+IF,e, I2" (13) 
t p  t In most cases [FeI~[F'N[, so that we may omit 

, t  t 2 ]F e [2 in comparison with [F~-[. With this approxima- 
tion we can write the expression for fi as 

g=4[g~,'l [sin OI/[gfvl=4klg;[ Isin OI/Igfv]. (14) 

From (2), (6) and (14), we obtain 

(g; ]F;l)=4k[F;[([sin O[/[Ffv[ ; IF;l) 

S L'sin _ 4klf;[ oo 01 exp [-([FNI2+IF;[ 2 
7 ~ G ~  0 

• 2 t -2IF•] [Fv] cos O)/ao]d]FfvldO. (15) 

Performing the integration over 0 (as in (A-2) of Ap- 
pendix A) we obtain 

8k 
(g; I F ; l ) = - - e x p ( - l F ; l Z / a 2 o )  

7C 

f 
oo • t 2 

× sinh (21Fhl IF~I/%) exp ( -IFhl~/~)  
0 

A C 22  - 7* 
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4k 
• 1 ' x IGrl- dlFfvl = - -  exp (-IF,;IZ/a~) 

7~ 

los nh  16, x (2]Ff~lx'~/ae) exp ( - x ) - - ~ - ,  

where x =  If;,rl2/a~. 
From (3) and (16) we obtain 

f (d; IFf.I)P(IF•I)d[Ff.I ( a ) =  IF'~ 

= ~ (d; yP)PO'P)dYP 
Oy P 

- - x=0sinh (2aypx ~) exp ( - x )  

x exp (-afyg/a~)P(ye)dye (17) 
where 

a=ap/~TQ=cx1/cr2= 1/r, say. (18) 

From (17) it is clear that the value of (6) depends on 
the number of atoms in the P-group. Substituting the 
functions P(yp) - depending on the number of atoms 
in the P-group - given below in (19), and carrying 
out the integrations, we obtain the value of (d) in 
each case. The density function of yp is known to be 
(Srinivasan, 1960; Ramachandran & Srinivasan, 1959) 

f a (yp-  1) for P = 1 / 

p ( y p ) = J  l /2rr l(1-y~/2)-*,  O<yp<_ 1/2 for P = 2  

/ (2/z0 * exp ( -y~/2)  for P =  M.C. 
2yp exp (-y2e) for P=M.A. (19a-d) 

One atom case (i.e. P= 1) 
From (17) and (19a) we have 

4k 
( d ) =  - -  exp ( -  o-a2/o-~) 

f ~o d x  (20) x sinh (2ax ~) exp ( - x ) - x - '  
0 

which is obtained by carrying out the integration over 
yp first. Using the power series expansion of sinh (x), 
it follows that 

f~ (bx ~) exp ( - x )  
dx 

s i n h  
o x 

= X F ( n - ½ )  b2n_l. (21) 
.=1 F(2n) 

From (20) and (21) we obtain 
4k ~ r n-~ 

(d) = -]7 exp ( -  r) X (22) .=, (n--})r(n)' 
where we have used the duplication formula for the 
gamma function in p. 11 of Sneddon (1961). 

Two atom case (i.e. P= 2) 
From (17) and (19b) we obtain 

41/2k l ¢2 / 1-Y~'/2) -~ exp (--O'12y2/C7 2) 
<a) -  ~2 ~yp=o/( 

x x=osinh (2aypx +) exp ( - x )  dyp. (23) 

On integration (see (B-4) of Appendix B), (23) gives 
4k 

( d ) =  - -  exp ( - 2 r )  
/r 

o o  

x X (2r)n-* ,FI(½; n+½; 2r).  (24) 
.=, (n--½)V(n+½) 

Many atom case (i.e. P= M.C.) 
From (17) and (19c) we obtain 

41/2k exp ( -  x) dx 
( d > - -  :g3/2 0 - 7  

x f:sinh(2aypx~)exp [_[a~ 

which on integration (see (C-7) of Appendix (2) be- 
comes 4k a2 

(6 )  - - - - -  loge[ (1 + ~) / (1 -c0]  (26) 
7r l/1 + a~ 

where 
c~ = [2a~/(1 + a~)] * . (27) 

Many atom case (i.e. P= M.A.) 
From (17) and (19d) we obtain 

sink 8k ~ (2aypx~) 
(a)=--=-  .=o  = 

dx [ a~ l ~ y2e] ypdy P x e x p ( - x ) - - f - } e x p [ - \ a ~  + ] J (28) 

which on integration (see (D-2) of Appendix D) yields 

( d ) = 4 k a l a z .  (29) 

3. Discussion of the theoretical results 

When a~ takes the limiting values, v/z. 0 and 1, the 
structure will effectively be made up of one type of 
atom alone and so will not exhibit any Bijvoet differ- 
ence, even though the structure is non-centrosymmetric 
(see James, 1954). That is, P(d)=6(d) and P(A)=6(A) 
in these cases. Thus, 

( A ) = ( d ) = 0  for a~=0 or 1 . (30) 

It is easy to show that the functions (A) and (6) ob- 
tained in the previous section satisfy (30). 

We can write the expression for (A) [see (12)] as 

(A)=ck 1/a~(1-a~) (31) 

where c takes values 2.2568, 2.0318, 1.8008 and 2 re- 
spectively for P= l, 2, M.C. and M.A. Equation (31) 
shows that (A) attains a maximum value for o~=0.5 
in all the cases and that it decreases to zero in a sym- 
metrical way about a21=0.5. It is also seen that for a 
given value of a~, the value of (A) decreases as P in- 
creases in the order P = I ,  2, M.A. and M.C. This 
shows that, for any given value of a~, the most pro- 
nounced anomalous dispersion effects are observed 
when P is just one in number. A similar statement does 
not hold for (6) for all values of a~, but requires 
modification (see below). 
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The  func t iona l  re la t ionsh ip  of  (f i)  and  a~ is no t  
s imple (except in the case P =  M.A.)  so t ha t  the va lue  
o f  a~ at  which  (fi)  a t ta ins  a m a x i m u m  c a n n o t  be 
ana ly t i ca l ly  worked  out.  However ,  f rom the table  of  
values of  (f i)  as a func t ion  of  a~ in the var ious  cases 
(see Table  1), it is seen tha t  ( ~ )  a t ta ins  a m a x i m u m  very 
close to (but  not exactly at) a ~ = 0 . 5  - the  case P =  M.A.  
being  an  except ion.  Fur ther ,  the  fall of  (fi)  a b o u t  the 
m a x i m u m  is not exact ly  symmet r ica l  abou t  a~ = 0.5 (the 
case P = M . A .  being an exception).  F o r  a fixed value  
o f  a~, when  a~ is no t  very  h igh  (say a~ < 0.7) the value 
of  (f i)  decreases as P is in the order  P = 1, 2, M.A.  and  

M.C.,  j u s t  as for  the  va lue  of  ( A )  also. F o r  h igher  (and 
fixed) values o f  a~ (say a~>  0.8) the  va lue  o f  (f i)  de- 
creases wi th  P in the order  P =  M.A.  or M.C.,  2 and  1. 
However ,  the  differences be tween the var ious  cases are 
not  very p r o m i n e n t  for  a~ > 0.8. 

A s tudy of  Tab le  1 shows tha t  (f i)  is more  sensit ive 
to va r i a t ion  of  k t h a n  to t ha t  of  a~. I t  is also seen t ha t  
large values of  (f i)  can be achieved by  choos ing  a 
sui table  heavy  a t o m  for  which  a~ is close to 0.5 a n d  
for  which  the value o f  k is as large as possible  and  it 
m a y  of ten be necessary  to m a k e  a c o m p r o m i s e  be- 
tween  the values o f  k and  a~ in prac t ica l  cases. 

Table  1. Expectation value o f  the BO'voet ratio ( x  100) as a function o f  the nature ( k = f " / f ' ) ,  
the number (P) and the fractional contribution (a~) o f  the anomalous scatterers in the unit cell 

k 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 0-22 0.24 0.26 0.28 0.30 
~ P 

0.1 

1 
2 

M.A. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
M.C. 

1 6 8 11 14 17 20 22 25 28 31 34 36 39 42 
2 5 7 10 12 15 17 20 22 25 27 30 32 34 37 

M.A. 5 7 10 12 14 17 19 22 24 26 29 31 34 36 
M.C. 4 6 8 10 13 15 17 19 21 23 25 27 29 31 

0.2 1 8 11 15 19 23 27 31 34 38 42 46 50 54 57 
2 7 10 13 16 20 23 26 30 33 36 39 43 46 49 

M.A. 6 10 13 16 19 22 26 29 32 35 38 42 45 48 
M.C. 5 8 11 14 16 19 22 25 27 30 33 36 38 41 

0.3 1 9 13 18 22 27 31 36 40 45 49 54 58 63 67 
2 8 11 15 19 23 26 30 34 38 41 45 49 53 56 

M.A. 7 11 15 18 22 26 29 33 37 40 44 48 51 55 
M.C. 6 9 12 15 19 22 25 28 31 34 37 40 43 46 

0.4 1 10 14 19 24 29 34 39 43 48 53 58 63 68 72 
2 8 12 16 20 24 28 32 36 40 43 47 51 55 59 

M.A. 8 12 16 20 24 27 31 35 39 43 47 51 55 59 
M.C. 7 10 13 16 20 23 26 30 33 36 39 43 46 49 

0.5 1 10 15 19 24 29 34 39 44 49 53 58 63 68 73 
2 8 12 16 20 24 27 31 35 39 43 47 51 55 59 

M.A. 8 12 16 20 24 28 32 36 40 44 48 52 56 60 
M.C. 7 10 13 17 20 24 27 30 34 37 40 44 47 51 

0.6 1 9 14 18 23 27 32 36 41 45 50 54 59 63 68 
2 7 11 15 19 22 26 30 33 37 41 44 48 52 56 

M.A. 8 12 16 20 24 27 31 35 39 43 47 51 55 59 
M.C. 7 10 13 17 20 24 27 30 34 37 40 44 47 50 

0"7 1 8 11 15 19 23 27 30 34 38 42 46 49 53 57 
2 7 10 13 17 20 23 27 30 33 36 40 43 46 50 

M.A. 7 11 15 18 22 26 29 33 37 40 44 48 51 55 
M.C. 6 10 13 16 19 23 26 29 32 36 39 42 45 49 

0"8 1 5 8 11 14 16 19 22 24 27 30 33 35 38 41 
2 6 8 11 14 17 20 22 25 28 31 34 36 39 42 

M.A. 6 10 13 16 19 22 26 29 32 35 38 42 45 48 
M.C. 6 9 12 15 18 21 24 27 30 33 36 39 42 45 

0"9 1 3 5 6 8 10 11 13 14 16 18 19 21 23 24 
2 4 6 9 11 13 15 17 19 21 23 26 28 30 32 

M.A. 5 7 10 12 14 17 19 22 24 26 29 31 34 36 
M.C. 5 8 10 13 15 18 20 23 25 28 30 33 35 38 

1.0 1 
2 

M.A. 
M.C. 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 



102 E X P E C T A T I O N  V A L U E  OF THE BIJVOET R A T I O  

The values of k[ = Af"/(fo + Af')] for commonly used 
anomalous scatterers were calculated for Cu K~ and 
Mo K~ radiations and these are given in Table 2. Since 
f0 decreases with (sin 0/2), while A f "  and Af'  are very 
nearly independent of (sin 0/2), the value of k in- 

creases as (sin 0/2) increases. In practical cases because 
of the thermal vibrations of the electron cloud, the 
reflexions for which 0 is large (say 0 > 50 °) may be too 
weak for measurement of Bijvoet differences (Hall & 
Maslen, 1965). The value of k was therefore averaged 
over the range 0 = 0 to 50 ° and this average value of k 
(denoted by/~) is given in Table 2 along with the value 
of k corresponding to the forward direction (0 =0,  de- 
noted by k0). 

Table 2. The value of k (= f " / f ' )  for a few typical atoms 
which scatter Cu Kc~ and Mo Ke radiations anomalously 

Atomic  
number  Cu K~ Mo Kct 

Atoms  Z k0* k t  k0 k 
S 16 0.04 0.07 0.01 0.04 
C1 17 0.04 0.08 0.01 0.04 
Ca 20 0.07 0.14 0.02 0.05 
Cr 24 0.11 0-21 0.03 0.09 
Mn 25 0.12 0.23 0.04 0"10 
Fe 26 0.14 0.25 0.04 0.11 
Co 27 0.16 0.30 0.04 0-12 
Zn 30 0.03 0.04 0"05 0.15 
Br 35 0.04 0-07 0-07 0.20 
I 53 0.14 0.22 0.05 0.10 
Pt 78 0.11 0-16 0.13 0.28 
Hg 80 0.12 0-17 0.14 0.30 

* ko is the value of  the ratio f " / f "  corresponding to the 
forward direction (i.e. O= 0). 

I" k is the mean value of  the rat iof"/ f"  corresponding to the 
range of  0 given by 0_< 0_< 50 °. In the calculation of k, the dis- 
persion corrections as listed in International Tables for X-ray 
Crystallography (1962) and the atomic scattering factors as 
obtained f rom the analytic constants using self consistent 
wave functions listed by Moore  (1963) were used. 

For Cu Kc~ radiation Cr, Fe, Co, I, Pt and Hg seem 
to be suitable, of which Co is the best. For Mo Ke 
radiation Zn, Br, Pt and Hg are probably most suit- 
able, of which Hg comes first. The choice of the an- 
omalous scatterer in any particular case is also depen- 
dent on the number of light atoms, since we have also 
the condition that the value of a~ could be closer to 0.5. 

Another important point worthy of notice is that the 
structural features play as important a role as the quan- 
tities k and a~ for the measurability of Bijvoet differen- 
ces. The above discussion on <6) and (A) strictly holds 
only for a structure in which the n0n-an0malous atoms 
are randomly distributed. If the distribution of the latter 
atoms in the unit cell of a non-centrosymmetric crystal 
shows a tendency to be nearly centrosymmetric, it is 
clear that even through the optimum conditions, viz., 
ax 2 = 0.5 and k large, are satisfied, the structure may 
not exhibit any measurable Bijvoet differences. 

APPENDIX A 

Equation (7) involves only Isin 0l, so that it can be 
written 

8klF~l 
<lzllI ; IFfil>= r w ~  exp ( -  lFa~12/o~) 

f oo , ' 2 2 ' 
× Vhl ~ exp ( - I F ~ I / % ) d l V h l  

0 

I;oxp × (21F~I IF~I cos O/a~)d cos 0 .  (A-l)  

Carrying out the integration over 0, we obtain from 
(A-l)" 

8k 
<lall; IF~;l>= - - e x p  ( -  IF~12/a~) 

7~ 

i 
o o  • • 2 

× sinh (21Fhl IF~;I/%) 
0 

× exp (-IF~I2/~) IF~ldlFhl. (A-2) 
Making the substitution IF~vl2/tr~ =y  in (A-2), we obtain 

4k 
(IAII; I&;l> = --~- a~ exp (-IF~lZ/a~) 

Io sinh × (21F~,ly+/aQ) exp ( - y ) d y .  (A-3) 

Using (34) in p. 165, Vol.I of Erdelyi (1954) in (A-3), 
we have 

(IAI[; IFi, l>=arc-*kaQlFi, I . (A-a) 

APPENDIX B 

Making the substitution y2/2=z  in (23), we obtain 

4k I 1 [z_+(l_z)_+ exp (-2a~z/a~) 
<6> = -~- o 

x sinh (23/2a zV ~- )  exp ( - x )  dz .  (B-l) 
o 

Using (21) in (B-l) we obtain 

(6)= 4k } r(~-½)(V/~a)~._ , 
n2,=1 F(2n) 

IloZn-l(1 × - z) -+ exp ( -  2a~z/a2)dz, (B-2) 

where we have interchanged the order of integration 
and summation. We know from p.46 of Sneddon 
(1961) that 

exp ( - a x ) = l F l ( c ;  c; - a x )  , (B-3) 

where aFx (a; b; x) is the Kummer's  confluent hyper- 
geometric function. Substituting (B-3) in (B-2) and 
carrying out the integration with the use of (16) in 
p.47 of Sneddon (1961), we obtain 

4k ~ (23/Za)zn_ t F(n-½) 
<6> = 7°=, 

x fl(n, ½)2Fz (c, n; c,n+½; - 2a~/a~) 
o o  

_ 4k X (23/2a)Zn-1 F(n-½) 
zc 2 ,=1 F(2n) 

x fl(n, ½)lFl(n; n+½; - 2~1o-~) 
o o  

_ 4k exp ( - 2 r )  S (2r)n-+ 
rc ,=1 (n-½)F(n+½) 

x lV1(½; n+½; 20 (B-4) 
where we have used the duplication formula in p. 11 
and equation (11-14) in p.38 of Sneddon (1961). 
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APPENDIX C 

Making the substitution (½+ 2 2 2 _  a J a 2 ) y v - z  in (25), we 
obtain 

exp ( -  x) - -  
0 x 

x sinh 2a e x p ( - z ) d z ,  (C-l) 

where 
l~=½+ a2/02=(1 + a~2)/2a2 2 . (C-2) 

Using (38) in p. 166, Vol.I of Erdelyi (1954) in (C-l), 
we obtain 

23/2 k Ioer f (ax*/ll) 
( d ) -  zc II 

dx (C-3) x exp [(a2/l~ - 1)x]--~-. 

From p.295, Vol.II of Erdelyi (1954), we know that 

exp (xZ) erf (x)=2rc-~XlFl(1; { ; xZ) . (C-4) 

Using (C-4) in (C-3), we obtain 

41/2 ka lox_  ÷ <t~> -- ~3/2 l~ exp ( -  x) 1FI(1 ; {; a2x/l~) dx 

41/2 ka 
- 2F1(1 ,  ½; k ;  a2/l ), (C-5) 

where we have used [17(i)] in p.48 of Sneddon (1961). 
Using l(v) in p.42 of Sneddon (1961), in (C-5) we 
obtain 

( g ) _  21/2 k 
~z ll loge [(1 +a/ll)/(1-a/la)]. (C-6) 

Substituting for a from (18) and for la from (C-2) in 
(C-6) we obtain 

4k t72 
< d > -  - - l o g e  [ ( I + c 0 / 0 - c 0 ] ,  (c-7) 

where 
~ = [2a2/(1 +a2)] * . (C-8) 

APPENDIX D 

Making the substitution y2/a~=z in (28) and inter- 
changing the order of integration, we obtain 

f;=0 exp 
(d)  = __4k a2 ( - x )  dx 

7~ X 

I• 0 sinh x (2atr2l/~) exp ( - z ) d z ,  (D-l) 

where we have used the simplification 2 2 crl/a 2 + 1 = 1/a~. 
Using (34) in p. 165, Vol.I of Erdelyi (1954) in (D-l) 
we obtain 

SoX  4k aa~ exp ( -  a~x) dx = 

= 4kaa~=4ktrla2, (D-2) 

where we have used (1) in p. 137, Vol.I of Erdelyi 
(1954) and (18). 

The author wishes to express his thanks to Professor 
G. N. Ramachandran for the interesting discussions he 
had with him and for his valuable suggestions. Thanks 
are also due to Professor R. Srinivasan and Dr K. Ven- 
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fited. 
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